LOCAL LAW 97: EMISSIONS TRADING FOR BUILDINGS?

DANIELLE SPIEGEL-FELD*

In April of 2019, the New York City Council passed groundbreaking legislation capping the amount of greenhouse gases that large building owners can emit, or cause to be emitted, before heavy fines are imposed. The new law, known as Local Law 97 of 2019 (“Local Law 97”), holds great promise for reducing building energy use, which accounts for roughly forty percent of emissions across the globe and over two-thirds of emissions in New York City. However, it will also impose substantial costs on the local real estate industry. With an eye towards minimizing these costs, Local Law 97 calls on the City to conduct a study exploring the potential creation of an emissions trading program for regulated buildings. Trading programs have been successfully used for years in industrial sectors to reduce the administrative cost of emissions control, yet how to translate the lessons learned from industrial trading programs to buildings is still very much an open question. In this essay, I highlight some key points of distinction between the emissions trading program that New York City is contemplating and prior programs that policymakers will need to bear in mind as they develop a trading scheme for this novel context. As the federal government retreats from its efforts to tackle climate change, and the burden of doing so falls increasingly upon local leaders’ shoulders, the question of how to tailor emissions trading programs to the local landscape will doubtless be relevant for cities beyond New York. Because emissions trading programs, like other types of market-based environmental policies, are designed to lower the cost of achieving environmental goals, cities that successfully implement emissions trading programs may be able to tackle climate concerns more effectively.

INTRODUCTION ...149
I. THEORY AND DESIGN OF EMISSIONS TRADING PROGRAMS ..151
II. KEY POINTS OF DISTINCTION156
 A. Buildings as Distinctive Regulated Entities156
 1. Buildings Are a Large and Diverse Class of Entities 156
 2. Building Owners Lack Complete Control Over Their GHGs ...159
 B. Cities as a Distinctive Regulator161
 1. Legal Constraints upon Cities as Regulators161
 2. Competing Municipal Policy Objectives164
CONCLUSION ..168

* Copyright © 2019 by Danielle Spiegel-Feld, Executive Director and Adjunct Professor, Guarini Center on Environmental, Energy and Land Use, New York University School of Law. The author would like to thank Sylwia Bialek, Alan Kikuchi, Adalene Minelli, Richard Revesz, Sara Savarani, Cecil Scheib, and Katrina Wyman for feedback on earlier drafts. Katherine Smith provided excellent research assistance.
INTRODUCTION

In April of 2019, the New York City Council passed groundbreaking legislation which imposed a cap on the amount of greenhouse gases (GHG) that large building owners can freely emit. The new law, known as Local Law 97 of 2019 (“Local Law 97”), establishes individualized GHG budgets for buildings larger than 25,000 square feet which restrict the amount of energy that can be purchased from the electrical grid or burned onsite.1 If a building exceeds this budget, which decreases over time, the building’s owner must pay a penalty in proportion to the amount of the excess. As of the time of this writing, New York City is the only local government in the United States to have capped buildings’ GHG emissions in this manner.

Local Law 97 holds substantial promise to reduce energy use in buildings, which is responsible for approximately two-thirds of New York City’s emissions. But the law also carries a hefty price tag: It has been estimated that the real estate industry will need to spend between $16 and $24 billion over the next decade to make the upgrades necessary to comply

1 A building’s GHG budget is calculated based on its square footage and occupancy type (i.e., apartments, hotels, offices, etc.). The formula is: \[\text{[gross square footage]} \times \text{[X tons of CO}_2\text{ per square foot]} \], where “X” equals the particular building emissions intensity limit for the particular occupancy type. N.Y.C. Admin. Code § 28-320.3.1. This formula is intended to accommodate the different intensities with which different types of properties are used. The bill sets out individualized carbon intensities for different types of energy sources (for example, electricity purchased from the grid, natural gas, and #2 fuel oil) that can be used to calculate the tons of CO$_2$ that have been consumed during the year. Id. Local Law 97 is hardly the first law that New York City has passed that aims to reduce building energy use; in 2009, the City passed a suite of bills collectively referred to as the “Greener, Greater Building Plan,” which required building owners to collect data regarding energy usage in their properties and make certain low-cost efficiency improvements. See N.Y.C. MAYOR’S OFFICE OF LONG-TERM PLANNING & SUSTAINABILITY, PLANYCC, OVERVIEW OF THE GREENER, GREATER BUILDINGS PLAN 1 (Oct. 2014). These bills did not set concrete limits on building energy use but were predicated on the belief that owners of energy-intensive properties would voluntarily reduce emissions if they knew how much energy they were using compared to their peers and were presented with information about how to reduce energy use. Implementation of the laws was predicted to reduce the City’s carbon emissions by approximately five percent, which would make substantial progress towards the City’s then-goal of reducing emissions thirty percent below 2005 levels by 2030. Advocacy in Action: Urban Green Council and the Greener, Greater Buildings Plan, URBAN GREEN, http://urbangreencouncil.force.com/GGGBP (last visited Nov. 16, 2019). As the City increased the stringency of its climate commitments—officials now aim to reduce emissions by forty percent by 2030 and eighty percent by 2050—it became clear that stronger regulation of the building sector would be necessary. See 2019 N.Y.C. Local Law No. 97 § 3, N.Y.C. Admin. Code § 24-803a(1); see also 2019 N.Y.C. Local Law No. 97 § 5, N.Y.C. Admin. Code § 28-320 (promulgating and establishing building energy and greenhouse gas emissions limits); 2019 N.Y.C. Local Law No. 97 § 6, N.Y.C. Admin. Code § 28-321 (promulgating additional energy conservation measure requirements for certain “covered buildings” as defined therein). Thus, Local Law 97 goes further than prior laws by actually capping the amount of fossil-based energy that buildings can use without paying penalties.
with the City’s cap. To put this number in perspective, the City’s most recent budget calls for approximately $14 billion in total annual capital expenditures, meaning that the real estate industry is expected to spend roughly ten percent of what the City spends on all capital expenses solely on capital improvements in any given year.

With an eye towards minimizing costs, Local Law 97 calls on the City to conduct a study on how to create and implement an emissions trading program for regulated buildings. The idea of developing an emissions trading program for buildings is novel. While trading programs have become fairly commonplace in environmental law, most such programs regulate large industrial sources of pollution (like power plants or oil refineries) rather than the end users of energy. They are also more often administered by higher levels of government than cities, be it national, state, or international authorities. What New York City is contemplating—a municipal carbon trading program for buildings—has only previously been implemented in Tokyo, which sits halfway across the world in an entirely different legal and cultural framework. Moreover, the scale of the regime New York City is contemplating establishes it in a different league than Tokyo—whereas Tokyo regulates approximately 1300 facilities, Local Law 97 covers roughly 50,000. Even the European Union’s emissions trading system,

5 Yuko Nishida & Ying Hua, Motivating Stakeholders to Deliver Change: Tokyo’s Cap-and-Trade Program, 39 BUILDING RES. & INFO. 519, 519 (2011). Notably, beginning in 2013, China launched seven pilot emissions trading programs throughout the country, and several of these programs include buildings among the regulated sources. However, the essay does not attempt to assess the lessons that the Chinese pilots hold for New York City for several reasons. To begin with, there is little reliable information that specifically assesses buildings’ performance in the pilots. Second, contrary to expectations regarding a New York City trading program, commentators have noted that “[t]he [Chinese government], directly or indirectly, dominates and controls the market-building process [P]rivate investments have not been adequately and effectively mobilized due to the unfavorable economic, regulatory, and policy environments.” Alex Y. Lo & Michael Howes, Powered by the State or Finance? The Organization of China’s Carbon Markets, 54 EURASIAN GEOGRAPHY & ECON. 386, 404 (2014). Finally, the national emissions trading scheme which will eventually replace the pilot programs will not cover buildings. Jocelyn Timperley, Q&A: How Will China’s New Carbon Trading Scheme Work?, CARBON BRIEF (Jan. 29, 2018, 3:46 PM), https://www.carbonbrief.org/qa-how-will-chinas-new-carbon-trading-scheme-work.

7 N.Y.C. MAYOR’S OFFICE OF SUSTAINABILITY, CLIMATE MOBILIZATION ACT: FREQUENTLY ASKED QUESTIONS 1 (2019), https://be-exchange.org/wp-
which is the largest in the world currently, covers only 13,400 sources. Thus, New York City’s ambitions represent a new frontier for emissions trading programs. This essay examines some of the unique characteristics of the New York City landscape that will need to be addressed for the program to function optimally.

There is an expansive literature examining the optimal design for traditional emissions trading programs. The goal of this essay is not to rehash that literature, or to present a detailed description of what New York City’s program should look like. Instead, my purpose is to sketch out some of the ways in which the idea of a municipal emissions trading program for buildings materially differs from the emissions trading programs that have operated thus far, which are important to consider before New York City’s program is implemented. Broadly speaking, there are two categories of challenges with which local officials will have to grapple: 1) challenges relating to the character of the regulated sources (buildings as opposed to industrial operations), and 2) challenges related to the distinctive identity of the regulator (cities as opposed to higher levels of government). In the essay below, I provide more detail on the nature of these distinctions and how they may impact the optimal program design. To frame the discussion first, I will briefly review the economic theory that undergirds emissions trading programs and instances in which such programs have been used to date.

I

THEORY AND DESIGN OF EMISSIONS TRADING PROGRAMS

The central insight behind emissions trading programs is that some firms will be able to reduce their emissions more cheaply than others. In a traditional environmental regulatory regime in which all firms must meet a uniform emissions standard, “polluter A is obliged to cut back his own wastes even if it is cheaper for him to pay his neighbor B to undertake the

9 See infra Part II.A.
Emissions trading programs aim to correct this inefficiency. By issuing permits that entitle firms to emit a specified amount of pollution, and allowing firms to buy and sell such permits from each other, firms with relatively low marginal reduction costs can choose to reduce more than firms with higher marginal costs. The result—assuming firms have good insight into their control costs and there are few barriers to trade—is that a system of marketable permits should “bring about a least-cost allocation of control burdens.”

The first step in setting up an emissions trading system is to determine the pool of regulated sources. The regulator must determine both the type of source (i.e., electric utilities, manufacturers, transportation providers) and the geographic reach of the program (i.e., regional, national, international). Once the full portfolio of covered sources is established, a regulator typically determines the total allowable amount of pollution that these sources can emit—the “cap”—and then divides this cap into permits which authorize a permit holder to emit up to a specified percentage of the aggregate cap. The permits are then allocated to the covered sources, who in turn surrender the permits to the regulator at specified intervals in an amount that corresponds to the emissions released during the preceding period.

Within these broad outlines, policymakers have substantial flexibility as to how they design trading programs. There is considerable variation among programs that have been developed. For example, how should regulators allocate emissions permits among covered entities? What sort of flexibility mechanisms, such as offsets (which allow covered sources to receive credit for pursuing emissions reductions at sources that are not covered by the cap) and banking (which allows sources to save unused credits in future compliance periods) should be allowed? How should compliance be monitored and enforced? Should entities that are not covered by the cap, such as investment funds or aggregators, be allowed to participate in the market? Should regulators pursue linkage with other programs such as

13 Id. at 1334–42.
15 Id.
18 For a general overview of the merits of restricting participation, see Terry Dinan & Andrew Stocking, U.S. Cap-and-Trade Markets: Constraining Participants, Transactions, and Prices, 6 REV. ENVTL. ECON. & POL’Y 169, 170 (2012).
that permits can be traded between them? These are just some of the design decisions that must be made.

In the United States, the first major emissions trading program was established in the early 1990s to regulate SO\textsubscript{2} emissions from electricity generators, which were causing acid rain.19 The trading component of the acid rain program was credited with substantially reducing the cost of pollution reductions relative to command-and-control regulation,20 and trading regimes were developed to control a variety of pollutants thereafter.21 In recent years, emissions trading programs have come to play a particularly prominent role in states’ efforts to control GHG emissions. Trading regimes are well-suited for GHG reductions because it is ultimately the aggregate amount of pollution across the globe, rather than the distribution of that pollution, that determines the extent of harm. As such, there is less of a need to worry about the creation of so-called “hot spots,” which can materialize under trading regimes if sources with relatively high abatement costs are concentrated in particular areas.22

The two most prominent GHG-oriented trading regimes in the United States are the Regional Greenhouse Gas Initiative (RGGI), which regulates GHGs from electricity generators in nine northeastern states,23 and California’s Cap-and-Trade Program, which covers emissions from

19 The U.S. Environmental Protection Agency had permitted some emissions trading under the Clean Air Act’s program to improve local air quality beginning as early as 1974. However, for much of this time, trading was only permitted between facilities that were under the same ownership, and trading was never widely used under the program. Hahn & Stavins, supra note 11, at 15–16, 36.

20 Under command-and-control regulation, all regulated sources “must meet a regulatory standard, typically set for categories of similar sources (for example, cement plants), by reference to what can be achieved through the use of ‘best available technology.’” RICHARD L. REVESZ ET AL., ENVIRONMENTAL LAW AND POLICY 183 (4th ed. 2019). Command-and-control regulation does not incentivize firms to reduce their pollution beyond the statutory requirements and is also insensitive to the variation in abatement costs between firms. Id. Market-based instruments, such as emissions trading programs, are designed to overcome these deficiencies. And, indeed, studies of the acid rain trading program indicate that compliance costs were reduced by as much as fifty percent below what they would have been under a command-and-control alternative. A. DENNY ELLERMAN ET AL., EMISSIONS TRADING IN THE U.S.: EXPERIENCE, LESSONS, AND CONSIDERATIONS FOR GREENHOUSE GASES 32 (2003).

21 Id. at 34.

22 Robert N. Stavins, Implications of the US Experience with Market-Based Environment Strategies for Future Climate Policy, in EMISSIONS TRADING FOR CLIMATE POLICY: US AND EUROPEAN PERSPECTIVES 69 (Bernd Hansjürgens ed., 2005). Note, however, that the co-pollutants that are often emitted alongside GHGs can create problematic hot spots. For a discussion of the potential for trading regimes to create hot spots and solutions to the problem, see Jonathan Remy Nash & Richard L. Revesz, Markets and Geography: Designing Marketable Permit Schemes to Control Local and Regional Pollutants, 28 ECOLOGY L.Q. 571, 572–73 (2001).

electricity generators, large industrial sources, and fuel distributors. Neither of these programs has operated flawlessly, and commentators have suggested a range of design adjustments that could be made to improve their functioning. Yet while these shortcomings have highlighted the importance of making careful decisions about market design, they have not cast serious doubt upon the potential for trading regimes to lower the cost of pollution control across a regulated sector.

In the context of emissions reductions from buildings in New York City over 25,000 square feet, cost-efficiency is of paramount importance. The local real estate industry, which is a powerful political constituency, is already facing headwinds. From a political standpoint, then, the long-term feasibility of meeting the City’s emissions reductions goals may depend on finding a path to minimizing the cost of emissions reductions in order to quell the industry’s unease. Cost-effectiveness is also critical from a purely environmental standpoint because policies that raise real estate costs in New York City could encourage sprawl and inadvertently increase regional GHG emissions as a result. Finally, tenant groups have an interest in ensuring costs are contained because property owners can be expected to pass on the cost of energy efficiency improvements to their tenants to the maximum

25 See, e.g., Brian C. Murray & Peter T. Maniloff, Why Have Greenhouse Gas Emissions in RGGI States Declined? An Econometric Attribution to Economic, Energy Market, and Policy Factors, 51 ENERGY ECON. 581, 583 (2015) (finding a lack of scarcity in the market for allowances between 2010 and 2012, which indicated that the cap had been set too high); Danny Cullenward et al., California’s Climate Emissions Are Falling, but Cap-and-Trade Is Not the Cause, NEAR ZERO (Nov. 10, 2017), http://www.nearzero.org/wp/2017/11/10/californias-climate-emissions-are-falling-but-cap-and-trade-is-not-the-cause (finding that the emissions cap itself was unlikely to have caused emissions reductions because, inter alia, total emissions were substantially below the cap).
26 See, e.g., LARA J. CUSHING ET AL., A PRELIMINARY ENVIRONMENTAL EQUITY ASSESSMENT OF CALIFORNIA’S CAP-AND-TRADE PROGRAM 10 (2016) (suggesting that public health and environmental equity benefits of the California cap-and-trade program would be enhanced if more emissions reductions were generated by facilities in economically disadvantaged communities and offset credits could only be generated by projects in California).
extent possible\(^\text{29}\) by raising rents.\(^\text{30}\) All of the above factors weigh in favor of developing a trading regime to fulfill Local Law 97’s emissions reductions requirements.

Although there is no domestic precedent for a municipal carbon trading program, Tokyo’s Emissions Trading System for buildings (“Tokyo ETS”) provides one model of what such a scheme might look like. Tokyo’s program covers approximately 1000 commercial/institutional buildings as well as about 300 industrial factories (residential buildings are excluded).\(^\text{31}\) The program, which aims to reduce the energy consumption from the 2000 levels at covered sources by thirty percent before 2030,\(^\text{32}\) issues allowances through an unusual mechanism. In most cap-and-trade programs, a central authority distributes an initial allocation of emissions credits at the program’s outset. In Tokyo, credits are generated as the program progresses.\(^\text{33}\) The process works as follows: Buildings are assigned an individualized baseline emissions level that reflects their average emissions in the three years prior to the start of the program and are required to reduce emissions by a specified percentage below their established baseline by the end of each of three compliance periods. If a building manages to reduce emissions by more than is required, it can apply to the authorities to issue credits in an amount that equals the excess reduction.\(^\text{34}\) These credits can then be sold to other regulated entities in bilateral trades.\(^\text{35}\) There is no open market for trading, like a stock market.\(^\text{36}\) To provide owners with flexibility, facilities can bank credits for use in the future and are allowed to meet a portion of their reduction obligation through offsets.\(^\text{37}\)

Despite some shortcomings,\(^\text{38}\) Tokyo’s program has enjoyed widespread compliance,\(^\text{39}\) thus proving that large commercial building
owners have the capacity to participate in trading regimes. And while the vastly different cultural, legal, and economic contexts of the two cities—as well as Tokyo’s decision to exclude residential buildings—may limit the direct applicability of lessons from Tokyo to New York City, it is still an important precedent. As such, in the pages that follow, I will note how Japanese officials addressed a given challenge—and how successful they were in doing so—wherever possible.

II

KEY POINTS OF DISTINCTION

As described in the introduction, there are two broad categories of differences between the emissions trading regime that New York City is contemplating and the schemes that came before it. The first category of challenges stems from the distinctive nature of buildings as a class of regulated entities. The second category of challenges relates to the identity of the regulator, with New York City facing a different mixture of legal constraints and policy considerations than higher levels of government would. This Part explores how these differences may impact the optimal program design.

A. Buildings as Distinctive Regulated Entities

With respect to the character of the regulated entities, there are at least two distinctions that seem particularly germane: 1) buildings are a larger and more diverse class of entities than has been regulated under traditional emissions trading programs, and 2) many building owners have limited control over the amount of energy used in their properties. These issues are discussed below.

1. Buildings Are a Large and Diverse Class of Entities

Perhaps the most fundamental way in which New York City’s carbon trading program would vary from most prior trading schemes is that it will regulate emissions from an unusually wide number and variety of entities. Most of the trading regimes that have been developed thus far regulate large businesses. For instance, RGGI regulates power plants, and California’s

40 See supra note 23 and accompanying text.
program regulates power plants, industrial facilities, and fuel distributors.\(^{41}\) In keeping with this trend, the Tokyo ETS regulates only factories and large commercial buildings.\(^{42}\) Local Law 97 casts a wider net. Like the Tokyo ETS, Local Law 97 regulates large commercial buildings, but, unlike Tokyo, it also regulates residential buildings. The size of regulated buildings is another point of distinction from prior regimes—under Local Law 97, buildings as large as the World Trade Center and as small as a twenty-unit co-op building in Queens fall within the scope of regulation. Similarly, the age of the regulated properties varies widely too, with properties that are more than one hundred years old regulated alongside buildings that are just being built today. It is a motley crew of sources. And as noted above, the number of regulated entities is enormous as well; whereas the entire State of California regulates approximately 450 sources under its cap-and-trade program,\(^{43}\) Local Law 97 covers roughly 50,000 sources.\(^{44}\)

The large variety and number of entities regulated by Local Law 97 provides certain advantages to New York City as a potential marketplace for emissions trading. Emissions trading schemes were designed to leverage difference in the marginal cost of emissions reductions between different sources;\(^{45}\) in a market that includes as much variation among covered sources as Local Law 97 regulates, trading should generate substantial cost efficiencies. The large number of sources should also help improve liquidity, which has been a challenge for some smaller trading programs,\(^{46}\) and decrease the risk that the market becomes noncompetitive.\(^{47}\)

Yet there are drawbacks as well. To begin with, the large number of covered sources introduces new administrative burdens with respect to monitoring and verifying reductions. That a local government should be the first jurisdiction to take on this challenge gives rise to some room for concern given the relative scarcity of resources at the local, as opposed to state or federal, level;\(^{48}\) after all, one of the reasons for the federalization of environmental law was that the federal government has greater administrative resources and expertise.\(^{49}\) New York City has gained some experience monitoring building energy use in the decade since the City’s

\(^{41}\) See supra note 24 and accompanying text.

\(^{42}\) See supra note 31 and accompanying text.

\(^{43}\) See supra note 24 and accompanying text.

\(^{44}\) See supra note 7 and accompanying text.

\(^{45}\) See supra notes 12–13 and accompanying text.

\(^{47}\) See Hahn & Stavins, supra note 11, at 14–15.

\(^{49}\) Id.
energy benchmarking law was passed,\footnote{2009 N.Y.C. Local Law No. 84, N.Y.C. Admin. Code § 28-309, https://www1.nyc.gov/assets/buildings/local_laws/ll84of2009.pdf.} which should have helped prepare it for the task. But for most of the time that the benchmarking law has operated, it has covered only a subset of the buildings that are covered by Local Law 97. Moreover, the benchmarking data has relied on self-reports without third-party verification.\footnote{PANYN, NEW YORK CITY LOCAL LAW 84 BENCHMARKING REPORT 10 (2013), https://www.energystar.gov/sites/default/files/buildings/tools/The%20New%20York%20City%20Local%20Law%2084%20Benchmarking%20Report%2C%202013.pdf (“Aside from the geographical identifiers of BBL, BIN, and street address, the City does not verify or correct any data entries prior to disclosure.”).} For a trading program to be successful, the City will likely need to devise more stringent monitoring and verification procedures.\footnote{OECD, GREENHOUSE GAS EMISSIONS TRADING AND PROJECT-BASED MECHANISMS 201 (2004), https://www.oecd-ilibrary.org/environment/greenhouse-gas-emissions-trading-and-project-based-mechanisms_9789264105775-en (“For an emissions trading regime to operate efficiently and to meet environmental targets, a strong monitoring, accounting and enforcement system is a key pre-requisite.”).} Importantly, a great deal of this administrative complexity will be present regardless of whether trading is permitted to implement Local Law 97 or not; even if all buildings were required to meet uniform performance standards, the City would still need to monitor emissions reductions of 50,000 sources, which is no small task. But trading presents further administrative burdens related to the management and policing of the market. For instance, regulators will need to track the provenance of tradeable permits to ensure that firms do not purchase fraudulent or duplicative permits. To alleviate such burdens, the City may wish to outsource the task of market management to a third party.\footnote{In this vein, the states that participate in RGGI tasked a nonprofit corporation with the administration of its carbon market. REG’L GREENHOUSE GAS INITIATIVE, THE INVESTMENT OF RGGI PROCEEDS IN 2016 2 (2018).}

The diversity of regulated sources generates novel complexities as well. Smaller buildings tend to be far less sophisticated than larger buildings, particularly when compared to the largest commercial properties, and have more limited administrative capabilities. Smaller property owners may thus have more difficulty calculating abatement costs, projecting trends in allowances prices, and/or finding partners to trade with if bilateral trading is required. All of these factors could make smaller buildings less likely to trade their allowances than larger buildings.\footnote{See, e.g., Wakabayashi & Kimura, supra note 32, at 1035 (noting that the covered entities in the Tokyo ETS that have exceeded their emissions limits are mostly small and medium size entities and that interview data indicates that these entities “have limited capacities to actively participate in the credit trading scheme”).} And if small buildings do not participate, they will not be able to benefit from the cost-savings that the trading regime affords. To avoid this outcome, regulators should establish rules that allow aggregators (or other intermediaries) to participate in the
market and thereby assist small building owners with the administrative tasks of trading while also assuming some of the financial risk. The prevalence of aggregators of demand response in electricity markets—and the rules that permitted their rise—may provide a useful guide as what to such rules might look like.

2. Building Owners Lack Complete Control Over Their GHGs

There is another reason that all nonindustrial building owners, regardless of their size, may be more reluctant than industrial facilities to sell permits: Nonindustrial building owners have more limited control over the amount of energy they use and the GHG intensity of that energy. Whereas many industrial sources, such as power plants, can control the GHG intensity of the fuel that they use for their power (for example, an electricity generator can switch from oil to natural gas), nonindustrial building owners cannot control the GHG intensity of the electricity purchased through the grid. Nonindustrial building owners also lack complete control over the amount of energy used within their property. In fact, in commercial buildings in New York City, tenant-controlled spaces typically account for forty to sixty percent of a building’s energy use. With building energy use so susceptible to tenants’ behavioral choices, landlords may hesitate to surrender permits based on projected energy use. The situation is not necessarily better in owner-occupied apartment buildings. In these buildings, the decisionmakers, typically a board, contribute only a fraction of the building’s total energy use. In both cases, the decisionmakers’ lack of control over total energy use may discourage the sale of allowances. To be clear, this is not an

55 See Bo Shen et al., The Role of Regulatory Reforms, Market Changes, and Technology Development to Make Demand Response a Viable Resource in Meeting Energy Challenges, 130 APPLIED ENERGY 814 (2014) (describing the rise of demand response in the United States and abroad and the policy changes that made this rise possible).

56 See, e.g., J. Scott Holladay & Steven Soloway, The Environmental Impacts of Fuel Switching Electricity Generators, 37 ENERGY J. 187, 189 (2016) (suggesting, however, that such a switch from oil to natural gas would be “a significant investment” for a building owner). Building owners have much more control over the GHG intensity of energy used for heating and hot water, as that is produced onsite.

58 There are two common types of owner occupied multi-family buildings in New York City: condominiums ("condos") and co-operatives ("co-ops"). In residential condominiums, owner occupants own a share of the building in fee simple. See N.Y. REAL PROP. LAW § 339-e(11) (McKinney 2015). In co-ops, by contrast, the building is owned by a corporation and occupants own a share of the corporation, which entitles the holder to a long-term propriety lease, rather than the underlying fee. Cooperatives, N.Y. ST. OFF. ATT’Y GEN., https://ag.ny.gov/real-estate-finance-bureau/cooperatives (last visited Nov. 16, 2019). Both types of buildings are typically managed by a board, which is typically comprised of a small group of the building’s occupants.
argument against developing a trading program to implement Local Law 97 because the same problem—that is, the problem of penalizing landlords for actions beyond their control—will exist even if owners are not permitted to trade to meet their emissions targets. (If anything, trading could mitigate concerns about unfairness by lowering compliance costs.) However, it is important to keep this dynamic in mind when designing a trading regime because of its potential to chill trading and thereby reduce liquidity.

Tokyo’s ETS experience lends some credence to the concern that building owners will hesitate to sell allowances. Tokyo saw very little trading in the first four years after the ETS was launched (2011–2015). Instead of trading permits, facilities tended to bank their surplus. And while there was a modest uptick in trading in 2016, trading fell off again thereafter. There are several possible explanations for why trading has been so anemic. It could be that trading has been stifled by the lack of an open trading platform, which can be expected to raise the transaction cost associated with trades, or that building owners have had so many low-cost opportunities to reduce energy use at their own properties that there has been little demand to purchase allowances. The low trading volume could also reflect a learning curve as participants gain familiarity with the marketplace. We may never know with certainty whether, and to what degree, these various factors have inhibited trading in Tokyo. However, given Tokyo’s experience and the particular disincentives building owners have to surrender permits, officials should be particularly careful to enact measures that encourage liquidity in the New York City market.

60 See BRUNDAGE-MOORE, supra note 59, at 3–4 (describing the worry that excessive banking of credits will lead to a lack of “adequate incentive[s] to reduce emissions in the next period”); see also Wakabayashi & Kimura, supra note 32, at 1035–36 (describing the prevalence of banking credits and demonstrating the low percentage—“3% of the issued emissions reduction credits”—of permits that were actually traded among firms).

61 E-mail from Sven Rudolph to Danielle Spiegel-Feld (June 13, 2019, 12:05 AM) (on file with author) (reporting that the 2018 statistics provided by the Tokyo Metropolitan Government showed a sharp drop off in trading).

62 See Rudolph & Kawakatsu, supra note 6, § 3.1 (stating that, due to “the lack of an institutionalize[d] trading platform [transaction and administrative] costs can be expected to be high”).

63 Id. at 1035; see also Sunhee Suk et al., The Korean Emissions Trading Scheme: Business Perspectives on the Early Years of Operations, 18 CLIMATE POL’Y 715, 722–23 (2018) (demonstrating similar learning curve behavior in the Korean emissions trading scheme market).
B. Cities as a Distinctive Regulator

In addition to the unique administrative and economic considerations that buildings present as regulated entities, the fact that a city would spearhead the trading scheme might itself impact its design because cities operate in a more constrained legal landscape than higher levels of government. In the paragraphs that follow, I describe how these constraints limit the design choices available to local policymakers. I also examine some distinctive policy considerations that local governments must address as they push forward.

I. Legal Constraints upon Cities as Regulators

One of the most significant constraints upon cities’ legal authority concerns their authority over taxation. Generally speaking, American cities cannot impose new taxes without express authorization from the State. However, cities typically have more leeway to impose other kinds of charges, such as regulatory fees, and can utilize these tools to advance policy goals that might otherwise be achieved through taxes. New York City fits this pattern; it cannot issue taxes without State approval but has broad discretion over other types of charges such as fees and penalties. To

66 See Gerald E. Frug & David J. Barron, City Bound: How States Stifle Urban Innovation 82 (2008) (“[N]o city has complete discretion when it comes to raising revenue.”). There are various explanations for why states have been so miserly in their grants of local fiscal autonomy, but, at least in New York, the phenomenon seems to trace back to a nineteenth century concern by “landed” upstate populations that the relatively poor urban dwellers could not be trusted to guide the State’s fiscal or political fortunes. See W. Bernard Richland, Constitutional City Home Rule in New York, 54 COLUM. L. REV. 311, 317 (1954) (quoting a leading figure at the 1821 Constitutional Convention as rallying against “landed interests” granting increased authority to the “motley assemblage of paupers, emigrants, journeymen manufacturers and those indefinable classes of inhabitants which a state and a city like ours is calculated to invite”); see also id. at 320–21 (quoting the “master mind” behind the 1894 Constitutional Convention as stating that “in the city of New York, about which I suppose the principle interest in this amendment centres, I think we need from time to time rescue by the Legislature”). Limitations on local fiscal autonomy remain popular with voters in some states today. See Judy A. Temple, Community Composition and Voter Support for Tax Limitations: Evidence from Home-Rule Elections, 62 S. ECON. J. 1002, 1002 (1996) (“Voter discontent has produced a large number of new controls [on taxing and spending powers of state and local governments] during the last two decades.”); see also Frug & Barron, supra, at 80–81 (indicating the prevalence of state-imposed restrictions on local fiscal autonomy). However, this contemporary popularity may be more the result of intralocal disagreements regarding the desired level of local public expenditure than a clash between landholders and urban populations. See Temple, supra, at 1004. Where cities lack direct authority to enact new taxes, they may still be able to request that the State take such action. See, e.g., Danielle Spiegel-Feld & Lauren Sherman, Expanding Green Roofs in New York City: Towards a Location-Specific Tax Incentive, 26 N.Y.U. ENVTL. L.J. 297, 298 (2018) (describing New York City Mayor Michael Bloomberg’s successful efforts to secure state legislation granting a New York City property tax abatement for green roofs).

67 See Erin Adele Scharff, Note, Taxes as Regulatory Tools: An Argument for Expanding New York City’s Taxing Authority, 86 N.Y.U. L. REV. 1556, 1577 (2011) (“In contrast to its limited
minimize legal risk, then, the City must structure its trading program in a manner that avoids imposing charges that resemble taxes. Unfortunately, the distinction between the two can be murky and varies between states. But, typically, taxes are compulsory and intended to raise government revenue, while fees are levied only upon those who choose to avail themselves of a particular benefit; the funds then raised are intended only to offset the cost to the public of the benefit received.

The sale of allowances at auction raises some particularly thorny issues in this respect. Economists often endorse using auctions to allocate allowances because doing so reduces the likelihood of creating windfalls for incumbents and more quickly creates an efficient allocation of permits. However, auctions introduce legal risk because they raise revenue for the government and can be seen as imposing mandatory charges on covered sources, features that bear some resemblance to taxes. To minimize these legal risks, local policymakers may wish to either use auctions sparingly, such that only a minority of available allowances are auctioned, or avoid them altogether. Tokyo’s program provides an example of what an auctionability to impose taxes, New York City has broad authority to enact fees that are quid pro pro payments for services provided. Under New York State law, local governments are given presumptive authority to assess usage fees.”; see also N.Y. MUN. HOME RULE LAW § 10(1)(ii)(a)(9-a) (McKinney 2018).

See, e.g., RICHARD BRIFFAULT & LAURIE REYNOLDS, CASES AND MATERIALS ON STATE AND LOCAL GOVERNMENT LAW 491–92 (8th ed. 2016) (comparing N.Y. CONST. art. XVI, § 1 (“The power of taxation shall never be surrendered”) with WASH. CONST. art. XI, § 12 (“The legislature . . . may . . . vest . . . [in local governments] the power to assess and collect taxes”)).

See, e.g., Jacob K. Goeree et al., An Experimental Study of Auctions Versus Grandfathering to Assign Pollution Permits, 8 J. EUR. ECON. ASS’N 514, 524–25 (2010) (demonstrating that permit prices when assigned by auction “tended to converge to competitive levels”). But see Christopher Costello et al., Grandfathering by Merit, in DISTRIBUTIONAL EFFECTS OF ENVIRONMENTAL MARKETS: INSIGHTS AND SOLUTIONS FROM ECONOMICS 57, 58–59 (Christopher Costello ed., 2019) (noting that grandfathering, combined with a measure of merit, can support market development because it is a more “palatable” means of allocation for incumbents, which diminishes their opposition to the program).

See generally Cal. Chamber of Commerce v. State Air Res. Bd., 216 Cal. Rptr. 3d 694 (2017) (“[O]n appeal plaintiffs assert . . . the revenue generated by the auction sales amounts to a tax that violates the two-thirds supermajority vote requirement of Proposition 13.”). While the majority of the California Court of Appeals upheld California Air Resources Board (CARB) regulations establishing an auction against the claim that they created an unauthorized tax, one of the three judges forcefully dissented from the opinion. Id. at 730 (Hull, J., dissenting). Moreover, in finding for the State, the majority placed considerable weight on the fact that CARB had distributed the majority of allowances for free, which allowed regulated entities to opt out of the auction; if CARB had auctioned off all allowances, the court may have reached a different decision. See id. at 719 (majority opinion). Thus, the case made clear that auctions introduce a degree of legal risk.
less program might look like; if allowances are generated by buildings that emit less than their cap, the city would presumably not be the primary recipient of the proceeds of the sales, and there is little (if any) risk that such sales would be considered a tax.

The second legal constraint with which local lawmakers must contend is potential restrictions on their ability to link with programs in other cities. By increasing the number of sources in a market, linkage can confer a number of benefits to emissions trading markets, including lowering the average cost of emissions reductions and reducing price volatility. In an attempt to take advantage of these benefits, quite a number of carbon markets have been linked in recent years. As a case in point, the prefecture of Saitama, which neighbors Tokyo, launched an emissions trading program the year after Tokyo did so. Allowances can be traded between the two jurisdictions.

The degree to which American cities could pursue formal links with other jurisdictions is not entirely clear. As creatures of the state, cities can only pursue intergovernmental cooperation to the extent that their state authorizes them to do so. More than forty states, New York included, have constitutional or statutory provisions that specifically authorize intergovernmental cooperation between local governments in their state. These provisions may provide a sufficient basis for cooperatively administering a carbon market. Yet, many of these same provisions restrict the subject of such cooperation, and emissions trading may not fit within the delineated scope. Moreover, where it is permitted, states generally require

72 See supra notes 33–35 and accompanying text.
74 For a review of markets that have pursued linkages, see Matthew Ranson & Robert N. Stavins, Linkage of Greenhouse Gas Emissions Trading Systems: Learning from Experience, 16 CLIMATE POL’Y 284, 286–88 (2016) (describing the achievement of the “same level of emissions reductions at lower cost” as the primary incentive for carbon market linkage, as well as describing other linkages between carbon market systems).
75 See Rudolph & Kawakatsu, supra note 39, at 218 (“While no use is made of stock exchanges, supply-demand-matching fairs are organised frequently for facilitating trading.”).
78 BRIFFAUT & REYNOLDS, supra note 68, at 581; see also Clayton P. Gillette, Regionalization and Interlocal Bargains, 76 N.Y.U. L. REV. 190, 221 (2001).
79 See BRIFFAUT & REYNOLDS, supra note 68, at 585 (positing that the “formal structure” of intergovernmental cooperation may affect its enforceability, accountability, and transparency). New York State has provided a particularly capacious grant of authority to its local governments to cooperate among themselves. See Mohnach, supra note 77, at 163–64. It seems quite possible that emissions trading would fit within this delineated scope of authority. See N.Y. GEN. MUN. LAW § 119-o (McKinney 2016) (authorizing local governments to enter into cooperative
that local governments receive express state authorization for cooperative agreements between local governments in different states. Federal constitutional law could also present an obstacle to linking markets across state lines.

In New York City, these potential constraints may not be particularly problematic; there are so many covered buildings within New York City itself that linkage is unlikely to be necessary to ensure liquidity. But for smaller cities, especially those in politically conservative states, the inability to pursue interstate linkages without state authorization could impede the efficient functioning of carbon markets. To minimize such impacts, policymakers in smaller cities that may be considering creating a trading program may want to broadly define the class of covered buildings to ensure that there is a sufficient number of sources within their city limits.

2. Competing Municipal Policy Objectives

A final challenge with which local policymakers will need to contend is how to harmonize building emissions trading programs with other municipal policy objectives, including promoting economic growth, offering high-quality affordable housing, and addressing environmental justice. There are many facets to the relationship between trading programs and each of these policy objectives. This short essay will highlight only a few issues that appear most pressing.

Looking first at the potential impacts of a trading program on economic growth, it is important to recognize that cities’ relatively small size may make them particularly vulnerable to the economic impacts of regulation because individuals and businesses may more easily move across municipal boundaries in response to rising costs than across state or national lines.

agreements regarding their “respective functions, powers or duties”).

80 See, e.g., N.Y. GEN. MUN. LAW § 463 (McKinney 2012); WASH. REV. CODE ANN. § 39.34.030 (West 2012).

81 See Augusta Wilson, Linking Across Borders: Opportunities and Obstacles for a Joint Regional Greenhouse Gas Initiative—Western Climate Initiative Market, 43 COLUM. J. ENVTL. L. 227, 260–64 (describing potential federal constitutional challenges to linkage between state carbon markets where the linkage may or may not be considered a “compact” under the Compact Clause, which prohibits states from entering into “any Agreement or Compact” with another state without the consent of Congress (quoting U.S. CONST. art. I, § 10, cl. 3)). The Compact Clause might also present an obstacle to interstate agreements between local governments given their status as creatures of the states in which they are located. See, e.g., WASH. REV. CODE ANN. § 39.34.040 (West 2012) (stating that any agreement between a public agency of Washington and a public agency of another state will be considered an interstate compact).

82 See supra notes 6–7 and accompanying text.

83 See, e.g., PAUL E. PETERSON, CITY LIMITS 69, 71–77 (1980) (arguing that local governments are so “sensitive to external changes” that they must focus their efforts on growing the local economy instead of promoting “egalitarian concerns,” which will ultimately cause the local economy to suffer by driving up the tax-to-benefit ratio for the average taxpayer and cause
These concerns about interlocal migration bolster the argument for permitting trading under Local Law 97 in order to lower the cost of compliance. Indeed, they should fuel efforts to devise a trading program that is as focused as possible on minimizing the cost of compliance; even if one is only concerned about environmental, rather than economic, impacts, there is little to be gained by simply shifting emissions to other jurisdictions. Offsets present a notable exception to this general rule: If regulated entities can offset their compliance obligations by purchasing emissions reductions outside New York City, there could be a wealth transfer from New York City to other localities, which would exacerbate the competitive disadvantage of properties within the city. As such, officials may want to limit the geographic scope of the offset market even if this raises the average cost of compliance beyond the level at which it would otherwise stand.

A second policy challenge with which municipal officials must grapple is how to ensure that a trading program does not undermine the City’s goal of maintaining ample high-quality affordable housing. Tokyo managed to sidestep this issue because the ETS does not cover residential properties. At the urging of tenant advocates who feared that landlords would pass on the costs of energy efficiency improvements by raising rents, New York City lawmakers exempted buildings containing rent-regulated or subsidized housing from Local Law 97’s emissions cap. The decision to exclude these properties—which account for as much as fifty-seven percent of the City’s building stock—was highly controversial. Yet, recent changes to the state’s rent regulations, which severely restrict landlords’ ability to recoup the cost of investments they make to improve properties, have decreased the

84 N.Y.C. Admin. Code § 28-320.1. Note that the law obligates the New York City Office of Building Energy Management to establish a new set of GHG targets for the period from 2035–2050 and 2050 onwards, and buildings with affordable housing are expected to be subject to these limitations. See § 28-320.3.9. Needless to say, this is a long way off.

85 The fifty-seven percent figure is the proportion of the roughly 1.2 million rent controlled, stabilized, or regulated rental units to the roughly 2.1 million total units. See SELECTED INITIAL FINDINGS OF THE 2017 N.Y.C. HOUSING AND VACANCY SURVEY 9 tbl.1, 11 tbl.3 (2018), https://www1.nyc.gov/assets/hpd/downloads/pdf/about/2017-hvs-initial-findings.pdf.

86 In New York City, rent control regulations have historically restricted landlords’ ability to pass on the cost of capital improvements to tenants via rent increases. Until recently, New York State’s rent control regulations allowed landlords to increase monthly rents by up to six percent to help finance capital improvements to the properties. Sharon Otterman & Matthew Haag, Rent Regulations in New York: How They’ll Affect Tenants and Landlords, N.Y. TIMES (June 12, 2019), https://www.nytimes.com/2019/06/12/nyregion/rent-regulation-laws-new-york.html (describing some provisions of the Housing Stability and Tenant Protection Act of 2019 in discussion in Albany on June 11, 2019; the Act passed presentment on June 14, 2019.). This past June, this limit was...
chances that this decision will be reversed. As such, buildings with affordable housing are unlikely to be obligated to participate in a future trading program.

The prospect of excluding affordable housing from a trading market is problematic. If we assume that low-cost abatement opportunities are distributed across building types, restricting the universe of properties in which owners can seek abatement opportunities should raise the average cost of abatement.87 This is particularly worrisome if we believe, with some reason, that affordable housing properties tend to be less well maintained than other properties and therefore have relatively more low-cost upgrades still ripe for the picking.88 Moreover, to the extent that energy efficiency improvements decrease onsite combustion of fossil fuels, which improves local air quality, or decreases electricity consumption, which reduces tenants’ utility bills, there are strong equity arguments for ensuring that affordable housing properties are not left behind.

So, how should affordable housing be included in a future trading market? One option may be to leave affordable housing outside the mandatory emissions cap but include it in an offset market. This approach would allow the market to take advantage of potential low-cost abatement opportunities in the sector without obliging owners of affordable housing to invest in the upgrades themselves.89 Allowing affordable housing to participate in the offset markets might also counter the potential incentive to disinvest in these properties that the recent rent regulations have created.90

These questions about the implications of emissions trading for lowered to two percent. Housing Stability and Tenant Protection Act of 2019, 2019 N.Y. UNCONSOL. LAW § 26-405.1(8) (McKinney 2019) (limiting rent increase for major capital improvements to two percent); Otterson & Haag, supra. The change will make it harder for owners of affordable housing units to recoup the cost of their investments in energy efficiency upgrades.

87 See, e.g., AKI KACHIT ET AL., INT’L CARBON ACTION P’SHIP, LINKING EMISSIONS TRADING SYSTEMS: A SUMMARY OF CURRENT RESEARCH 4 (2015) (noting that cost efficiencies improve in markets in which there is a larger number of abatement opportunities available).

89 Local Law 97 authorizes covered entities to meet up to ten percent of their compliance obligation through the purchase of GHG offsets. N.Y.C. Admin. Code § 28-320.3.6.2. The law tasks the Office of Building Energy Management with drafting regulations defining the scope of eligible offsets, and it is possible that energy efficiency improvements in affordable housing buildings would qualify. See id.

90 See Luis Ferré-Sadurni et al., Landmark Deal Reached on Rent Protections for Tenants in N.Y., N.Y. TIMES (June 11, 2019), https://www.nytimes.com/2019/06/11/nyregion/rent-protection-regulation.html (describing some of the recent rent law and tenant protection legislation in discussion in Albany, New York). The revenue gained from participation in the offset market thus counteracts hypothetical disincentives to investment that may stem from rent control.
affordable housing presage another concern that local policymakers must address: How to reconcile the goals of a trading program, which seeks to cull the least-cost emissions reductions, wherever they may be, with the environmental justice goal that emissions reductions be fairly distributed among low-income communities of color and more affluent groups alike.

The concern here is not about the distribution of GHG emissions themselves but rather the co-pollutants that so often accompany GHG emissions. Local governments are better positioned than higher levels of government to evaluate the community-level distributional impacts of environmental policies given their proximity to the populations in question and may therefore have a special obligation to consider these impacts in designing environmental policies. They are also more likely to face special political pressure to do so.

Left to its own devices, a liberally-designed emissions market—by which I mean a market that is not designed to bias firms to reduce emissions in particular locations—may produce an equitable distribution of reductions; despite some early warning signs about the distributional impacts of the California Cap-and-Trade Program, a fairly rigorous study on the subject failed to find a disparate impact on disadvantaged communities. But if local officials want to actively encourage the market to make emissions reductions in particular neighborhoods, they could develop rules, such as location-specific credit adjustments, that incentivize reductions in disadvantaged communities. It must be recognized, however, that there are tradeoffs between encouraging a particular distribution of reductions and maximizing

91 See Christopher Costello et al., Introduction, in DISTRIBUTIONAL EFFECTS OF ENVIRONMENTAL MARKETS: INSIGHTS AND SOLUTIONS FROM ECONOMICS, at 5, 8–9 (Christopher Costello ed., 2019).

92 See Richard L. Revesz, The Race to the Bottom and Federal Environmental Regulation: A Response to Critics, 82 MINN. L. REV. 535, 537 (1997) (noting that it would be more costly for the federal government to gather information about the location-specific costs and benefits of environmental regulation than states). Expanding upon this logic, local governments should have even greater purview into the neighborhood-specific costs and benefits than states.

93 I assume that local environmental justice groups and other representatives of community-level interests will have more political impact at the local level than at the state or federal levels, especially groups that are not as well funded. See generally Pamela Corrie, An Assessment of the Role of Local Government in Environmental Regulation, 5 UCLA J. ENVTL. L. & POL’Y 145, 147 (1986) (pointing out that local officials have a “greater degree of accountability to local residents than do federal officials”).

94 See generally CUSHING ET AL., supra note 26 (noting distributional impact and “significant co-benefits to health, particularly in disadvantaged communities”).

95 Kyle C. Meng, Is Cap-and-Trade Causing More Greenhouse Gas Emissions in Disadvantaged Communities?, in DISTRIBUTIONAL EFFECTS OF ENVIRONMENTAL MARKETS: INSIGHTS AND SOLUTIONS FROM ECONOMICS, at 27, 30 (Christopher Costello ed., 2019). Meng also notes that “studies of another California cap-and-trade program for nitrogen oxide pollution have found that lower-income households are either not affected or may actually benefit from emissions trading.” Id. at 28 (internal citations omitted).
market efficiency. Given these tradeoffs, it may be preferable to strengthen or improve the enforcement of complimentary air pollution programs, such as New York City’s Clean Heat program, to mitigate lingering pollution hot spots, than to hinder the liberal operation of the GHG market.

CONCLUSION

Emissions trading for buildings is replete with potential. As the burden of confronting climate change falls increasingly upon local leaders’ shoulders, the need to minimize the cost of emissions reductions has never been greater. Experience from the industrial sectors indicates that trading programs could help local policymakers fulfill that need. Yet how to translate the lessons learned from industrial trading programs to trading programs involving buildings is still very much an open question. In this essay, I have tried to highlight some key points of distinction that policymakers will need to bear in mind as they adapt traditional trading programs to this novel context. Further research into the economics of building emissions reductions in different cities, as well as ongoing dialogue with local stakeholders, will be needed to craft trading programs that provide the greatest environmental benefit at the least cost.

96 What Is NYC Clean Heat?, NYC CLEAN HEAT, https://www.nyccleanheat.org/content/what-nyc-clean-heat (describing NYC Clean Heat as a program whose purpose is “to encourage and assist buildings in converting to the cleanest available fuels and alternative energy options”).

97 See supra Abstract (positing that emissions trading programs can “lower the cost of achieving environmental goals,” thus allowing cities to “tackle climate concerns more effectively”).